ChatGPT 提示工程总结

本篇博客是 deeplearning.ai 最近推出的短期课程《ChatGPT Prompt Engineering for Developers》的学习总结。

引言

总的来说,当前有两类大语言模型(LLM):基础 LLM指令微调 LLM

基础 LLM 基于大量文本数据训练而成,核心思想为预测一句话的下一个单词(即词语接龙)。基于语料的限制,有时会返回不符合预期的结果(如上图所示)。

指令微调 LLM 基于人类设定的指令(格式化的输入与输出)对基础 LLM 进行微调训练,使其能够返回更加有用且无害的结果。当前还会使用 RLHF(基于人类反馈的强化学习)来进一步提升模型效果,此处不做展开。

本课程旨在介绍如何基于 ChatGPT 官方 API 编写 Prompt(即指令),来驱动模型更好地完成各种各样的任务。

指南

总的来说,Prompt 的编写有两大原则:

  • 原则一:编写明确而清晰的指令
  • 原则二:给模型足够的时间思考

下面将结合具体的代码来对这两条原则进行详细说明。在这之前,首先给出本课程中所使用的模型调用函数的代码(略去了从环境变量获取 key 的部分):

import openai

openai.api_key = 'xxx'

def get_completion(prompt, model="gpt-3.5-turbo"):
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # this is the degree of randomness of the model's output
)
return response.choices[0].message["content"]

编写明确而清晰的指令

对于这一原则,课程中给出了四条具体的策略来实践该原则:

策略 1:使用分隔符,避免 Prompt 入侵

我们可以通过分隔符来标识仅需要 ChatGPT 进行阅读的文本,防止其被解析为指令(即 Prompt 入侵)。常用的分隔符包括:三个引号、三个反引号、三个破折号等,ChatGPT 对于这些分隔符的区分并不是很敏感(例如在 Prompt 中说明使用反引号分隔,但实际用的是引号,并不会影响模型输出)。

具体的代码示例如下(Prompt 不作翻译,可以自行替换为中文):

text = f"""
内容省略(可添加任意内容)
"""
prompt = f"""
Summarize the text delimited by triple backticks \
into a single sentence.
```{text}```
"""

response = get_completion(prompt)
print(response)

策略 2:要求模型提供结构化输出

对于开发者来说,要求模型提供诸如 HTML 或 JSON 的格式化输出,有利于构建更加健壮的应用。具体的代码示例如下:

prompt = f"""
Generate a list of three made-up book titles along \
with their authors and genres.
Provide them in JSON format with the following keys:
book_id, title, author, genre.
"""

response = get_completion(prompt)
print(response)

策略 3:让模型进行条件判断

对于较复杂的 Prompt,模型生成结果的时间可能会较长,同时可能浪费大量的 token。为了规避不必要的 API 调用消耗,我们可以在 Prompt 中包含一定的条件判断逻辑,来帮助模型在不满足条件时提前终止运算,直接返回结果。具体的代码示例如下:

text_1 = f"""
如何把大象放进冰箱?\
首先打开冰箱的门,\
然后把大象放进去,\
最后关上冰箱门。
"""
prompt = f"""
You will be provided with text delimited by triple quotes.
If it contains a sequence of instructions, \
re-write those instructions in the following format:

Step 1 - ...
Step 2 - …

Step N - …

If the text does not contain a sequence of instructions, \
then simply write \"No steps provided.\"

```{text_1}```
"""

response = get_completion(prompt)
print("Completion for Text 1:")
print(response)

策略 4:少量(Few-shot)训练提示

有时候,对于某些任务,我们需要为模型提供少量完成该任务的成功示例,来帮助模型更好地理解并完成该任务。具体的代码示例如下:

prompt = f"""
Your task is to answer in a consistent style.

<child>: Teach me about patience.

<grandparent>: The river that carves the deepest \
valley flows from a modest spring; the \
grandest symphony originates from a single note; \
the most intricate tapestry begins with a solitary thread.

<child>: Teach me about love.
"""

response = get_completion(prompt)
print(response)

给模型足够的时间思考

这一原则的意义是:对于较为复杂的任务,如果不进行拆解,要求模型在短时间内通过少量词语进行回答,则可能导致结果的不准确。课程中给出了两条具体的策略来实践该原则:

策略 1:指定完成任务所需的步骤

该策略即通过 Prompt 拆解任务步骤降低复杂度,以帮助模型更好地完成任务。具体的代码示例如下(省略了 text 的内容,指定输出格式):

prompt = f"""
Your task is to perform the following actions:
1 - Summarize the following text delimited by
<> with 1 sentence.
2 - Translate the summary into Chinese.
3 - List each name in the Chinese summary.
4 - Output a json object that contains the
following keys: chinese_summary, num_names.

Use the following format:
Text: <text to summarize>
Summary: <summary>
Translation: <summary translation>
Names: <list of names in Chinese summary>
Output JSON: <json with summary and num_names>

Text: <{text}>
"""

response = get_completion(prompt)
print("\nCompletion for prompt 2:")
print(response)

策略 2:提示模型在匆忙得出结论之前思考自己的解决方案

通过提示模型在回答之前思考自己的解决方案,有时可以得到更好的结果。课程中给出了一个解数学题的案例,如果没有提示模型首先尝试解题,则模型会判断学生的解法是正确的,但是如果提示模型首先自己推导解题过程再进行判断,则其会得出学生的解法是错误的结论。具体的代码如下(比较长):

prompt = f"""
Your task is to determine if the student's solution \
is correct or not.
To solve the problem do the following:
- First, work out your own solution to the problem.
- Then compare your solution to the student's solution \
and evaluate if the student's solution is correct or not.
Don't decide if the student's solution is correct until
you have done the problem yourself.

Use the following format:
Question:
'''
question here
'''
Student's solution:
'''
student's solution here
'''
Actual solution:
'''
steps to work out the solution and your solution here
'''
Is the student's solution the same as actual solution \
just calculated:
'''
yes or no
'''
Student grade:
'''
correct or incorrect
'''

Question:
'''
I'm building a solar power installation and I need help \
working out the financials.
- Land costs $100 / square foot
- I can buy solar panels for $250 / square foot
- I negotiated a contract for maintenance that will cost \
me a flat $100k per year, and an additional $10 / square \
foot
What is the total cost for the first year of operations \
as a function of the number of square feet.
'''
Student's solution:
'''
Let x be the size of the installation in square feet.
Costs:
1. Land cost: 100x
2. Solar panel cost: 250x
3. Maintenance cost: 100,000 + 100x
Total cost: 100x + 250x + 100,000 + 100x = 450x + 100,000
'''
Actual solution:
"""

response = get_completion(prompt)
print(response)

该代码的输出结果为:

Let x be the size of the installation in square feet.

Costs:
1. Land cost: 100x
2. Solar panel cost: 250x
3. Maintenance cost: 100,000 + 10x

Total cost: 100x + 250x + 100,000 + 10x = 360x + 100,000

Is the student's solution the same as actual solution just calculated:
No

Student grade:
Incorrect

PS:课程中在多行文本中使用反斜杠来代替换行符,保证原始文本中没有换行,但是其在反斜杠添加了空格,会导致换行依旧存在,需要去除空格(实际对模型来说并没有影响,只是影响展示)

此外,本节还提到了模型的一种局限性:幻觉(Hallucination)。幻觉指 LLM 模型对于知识的边界性有时把握不足,可能会出现一本正经地胡说八道的情况。为了减少幻觉,我们可以提示模型首先收集相关信息,基于这些信息来回答问题。

迭代

编写 Prompt 是一个持续迭代的过程,通过对模型返回结果的分析,不断地修改 Prompt,我们可以最终得到较为满意的输出。同时,对 Prompt 的修改需要遵循上一章节提到的原则。

摘要

我们可以使用 ChatGPT 来辅助生成对长文本的总结,以帮助我们在短时间内获取更多的信息。具体来说,通过模型执行摘要任务有以下两个注意点:

细化需求

通过 Prompt 来细化摘要的具体目的与关注点,可以获得更加精准的摘要。具体的代码示例如下:

prompt = f"""
Your task is to generate a short summary of a product \
review from an ecommerce site to give feedback to the \
Shipping deparmtment.

Summarize the review below in Chinese, delimited by triple
backticks, in at most 30 words, and focusing on any aspects \
that mention shipping and delivery of the product.

Review: '''{prod_review}'''
"""

response = get_completion(prompt)
print(response)

关键字差异

如果在 Prompt 中使用关键字总结(summarize),虽然模型会基于 Prompt 返回对应的总结,但其中通常会包含一些其他的信息;而如果使用关键字提取(extract),则模型会专注于提取在 prompt 中所提示的范围,返回更加精准的摘要。具体的代码示例如下:

prompt = f"""
Your task is to extract relevant information from \
a product review from an ecommerce site to give \
feedback to the Shipping department. The extracted result \
should be translated into Chinese.

From the review below delimited by triple quotes \
extract the information relevant to shipping and \
delivery. Limit to 30 words.

Review: '''{prod_review}'''
"""

response = get_completion(prompt)
print(response)

推理

ChatGPT 非常适合用来对文本进行推理,对于传统 NLP 方法来说需要大量步骤(例如数据收集、打标签、训练、测试等)才能完成的任务,ChatGPT 可以通过 Prompt 轻松完成。本节将列举两种主要的推理任务:情感分析信息提取

情感分析

我们可以通过多种方式来指导 ChatGPT 分析一段文字中的情感,例如:

识别积极/消极

prompt = f"""
What is the sentiment of the following product review,
which is delimited with triple backticks?

Give your answer as a single word, either "positive" \
or "negative".

Review text: '''{lamp_review}'''
"""

response = get_completion(prompt)
print(response)

识别多种情感

prompt = f"""
Identify a list of emotions that the writer of the \
following review is expressing. Include no more than \
five items in the list. Format your answer as a list of \
lower-case words separated by commas.

Review text: '''{lamp_review}'''
"""

response = get_completion(prompt)
print(response)

识别特定情感

prompt = f"""
Is the writer of the following review expressing anger?\
The review is delimited with triple backticks. \
Give your answer as either yes or no.

Review text: '''{lamp_review}'''
"""
response = get_completion(prompt)
print(response)

信息提取

我们可以通过不同的 Prompt 指导 ChatGPT 提取不同维度的信息,例如:

提取标签(实体)信息

prompt = f"""
Identify the following items from the review text:
- Item purchased by reviewer
- Company that made the item

The review is delimited with triple backticks. \
Format your response as a JSON object with \
"Item" and "Brand" as the keys.
If the information isn't present, use "unknown" \
as the value.
Make your response as short as possible.

Review text: '''{lamp_review}'''
"""

response = get_completion(prompt)
print(response)

提取主题信息

对于主题提取,ChatGPT 可以直接提取多个主题:

prompt = f"""
Determine five topics that are being discussed in the \
following text, which is delimited by triple backticks.

Make each item one or two words long.

Format your response as a list of items separated by commas.

Text sample: '''{story}'''
"""

response = get_completion(prompt)
print(response)

也可以给定主题列表,判断输入文本中包含了哪些特定主题(该方式也被称为 Zero Shot 训练):

topic_list = [
"nasa", "local government", "engineering",
"employee satisfaction", "federal government"
]

prompt = f"""
Determine whether each item in the following list of \
topics is a topic in the text below, which
is delimited with triple backticks.

Give your answer as list with 0 or 1 for each topic.\

List of topics: {", ".join(topic_list)}

Text sample: '''{story}'''
"""

response = get_completion(prompt)
print(response)

转换

本节将介绍如何使用 ChatGPT 来进行文本转换任务,例如翻译、拼写与语法检查、语气调整、格式转换等,主要以代码示例为主。

翻译

ChatGPT 基于多种语言进行训练,具有较强的翻译能力,例如:

翻译多种语言

prompt = f"""
Translate the following text to French and Spanish
and English pirate: \
'''I want to order a basketball'''
"""

response = get_completion(prompt)
print(response)

识别当前语言

prompt = f"""
Tell me which language this is:
'''Combien coûte le lampadaire?'''
"""

response = get_completion(prompt)
print(response)

语气调整

基于不同的读者(观众),输出的文字可能有较大差异。ChatGPT 可以基于 Prompt 产生不同的语调,例如:

prompt = f"""
Translate the following from slang to a business letter:
'Dude, This is Joe, check out this spec on this standing lamp.'
"""

response = get_completion(prompt)
print(response)

格式转换

ChatGPT 支持多种格式的转换,Prompt 应该清楚地描述输入与输出格式,例如:

data_json = { "resturant employees" :[ 
{"name":"Shyam", "email":"shyamjaiswal@gmail.com"},
{"name":"Bob", "email":"bob32@gmail.com"},
{"name":"Jai", "email":"jai87@gmail.com"}
]}

prompt = f"""
Translate the following python dictionary from JSON to an HTML \
table with column headers and title: {data_json}
"""

response = get_completion(prompt)
print(response)

文字检查

ChatGPT 还可以用来检查拼写和语法,帮助你改写文字(写文章必备),例如:

普通校对与改写

text = f"""
Got this for my daughter for her birthday cuz she keeps taking \
mine from my room. Yes, adults also like pandas too. She takes \
it everywhere with her, and it's super soft and cute. One of the \
ears is a bit lower than the other, and I don't think that was \
designed to be asymmetrical. It's a bit small for what I paid for it \
though. I think there might be other options that are bigger for \
the same price. It arrived a day earlier than expected, so I got \
to play with it myself before I gave it to my daughter.
"""

prompt = f"proofread and correct this review: ```{text}```"
response = get_completion(prompt)
print(response)

课程中还使用了 redlines 包来查看改写前后的差异:

from redlines import Redlines

diff = Redlines(text,response)
display(Markdown(diff.output_markdown))

基于特定风格的校对与改写

prompt = f"""
proofread and correct this review. Make it more compelling.
Ensure it follows APA style guide and targets an advanced reader.
Output in markdown format.
Text: ```{text}```
"""

response = get_completion(prompt)
display(Markdown(response))

扩展

ChatGPT 可以用来对文字进行扩展(将短文本变成长文本),本节将给出一个使用 ChatGPT 自动回复 email 的示例,并介绍对扩展来说很重要的一个 API 参数:温度(Temperature)

扩展示例

下面的例子给出了基于用户的评价生成自动回复 email 的 Prompt:

prompt = f"""
You are a customer service AI assistant.
Your task is to send an email reply in Chinese to a valued customer.
Given the customer email delimited by ```, \
Generate a reply to thank the customer for their review.
If the sentiment is positive or neutral, thank them for \
their review.
If the sentiment is negative, apologize and suggest that \
they can reach out to customer service.
Make sure to use specific details from the review.
Write in a concise and professional tone.
Sign the email as `AI customer agent`.
Customer review: '''{review}'''
Review sentiment: {sentiment}
"""

response = get_completion(prompt)
print(response)

实际上情感可以由 ChatGPT 自动提取,无需指定。此外,为了防止不好的用途,课程中建议明确表明上述内容是由 AI 生成的。

温度参数

温度参数可以用来控制模型输出的随机性,具体规则如下:

  • 温度越低,模型的输出越稳定(更保守)
  • 温度越高,模型的输出越随机(更具有创造力)

在不同的场景下,通过对温度参数的控制,可以得到更加合适的输出(温度参数通常设置在 0-2 之间)。

聊天机器人

本节将介绍如何使用 ChatGPT 构建一个聊天机器人,其关键在于如何为模型提供上下文信息。对模型来说,每一轮对话都是独立的,我们需要在接口中传入之前对话的历史信息。对于接口来说,总共存在三种角色,分别是:

  • System 角色:用于设定模型的身份,约束模型行为,放置于一轮对话的最开头
  • User 角色:当前对话的用户,提供输入信息
  • Assistant 角色:生成回复的模型

历史信息需要明确地表明每一条消息所对应的角色,如下图所示:

为了实现历史信息的传入,需要修改之前的模型调用函数:

def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # this is the degree of randomness of the model's output
)
# print(str(response.choices[0].message))
return response.choices[0].message["content"]

基于上述函数,可以手动实现历史消息的传入:

messages =  [  
{'role':'system', 'content':'You are friendly chatbot.'},
{'role':'user', 'content':'Hi, my name is Isa'},
{'role':'assistant', 'content': "Hi Isa! It's nice to meet you. \
Is there anything I can help you with today?"},
{'role':'user', 'content':'Yes, you can remind me, What is my name?'} ]
response = get_completion_from_messages(messages, temperature=1)
print(response)

为了实现一个聊天机器人,我们需要支持对于对话历史消息的自动收集,课程中基于 panel 包实现了一个点菜机器人,通过精心设置的 System Prompt 实现了自动化点菜与价格计算,具体的代码此处不作展开。

这里给出一个更加通用的聊天机器人 demo,基于 Streamlit 实现,可以自由设置 System Prompt,同时对于对话历史消息进行了自动收集与上传:

import streamlit as st
import openai

st.markdown('# ChatGPT demo')


def init_session():
if 'round' not in st.session_state:
print("重置轮数")
st.session_state['round'] = 1

if 'question' not in st.session_state:
print("重置问题记录")
st.session_state['question'] = []

if 'answer' not in st.session_state:
print("重置回答记录")
st.session_state['answer'] = []


init_session()
code_input = st.text_input('请输入使用密钥')
system_input = st.text_input('请设定 ChatGPT 角色(用于生成符合角色的回答)', "你是一个有用的AI助手")
latest_input = st.text_area('请输入内容')

openai.api_key = code_input

if st.button('发送'):
st.session_state['question'].append(latest_input)

message_list = []
dic_q_item = {"role": "system", "content": system_input}
message_list.append(dic_q_item)
for n in range(st.session_state['round']):
# 第 n 轮,有 n 个问题,n - 1 个答案待组装
if n - 1 >= 0:
dic_a_item = {"role": "assistant", "content": st.session_state['answer'][n - 1]}
message_list.append(dic_a_item)
dic_q_item = {"role": "user", "content": st.session_state['question'][n]}
message_list.append(dic_q_item)

completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
max_tokens=1000,
user="wzy",
messages=message_list,
temperature=0
)

answer = completion.choices[0].message['content']
st.session_state['answer'].append(answer)

col1, col2 = st.columns(2)

for i in range(st.session_state['round']):
with col1:
st.text('User')
st.write(' ' + st.session_state['question'][i])
st.text(' ')
st.write(' ')
with col2:
st.text(' ')
st.write(' ')
st.text('ChatGPT')
st.write(' ' + st.session_state['answer'][i])

st.session_state['round'] += 1

if st.button('清空对话记录'):
st.session_state.clear()

总结

以下为本课程核心知识点的思维导图总结: